化学工程

发布时间:2016-10-28|阅读次数:13

 

氯碱等企业氢气回收净化技术及制备

技术简介

随着世界经济的发展,对清洁能源的需求,尤其对氢气特别是高纯氢气的需求越来越大。氯碱工业副产氢气量很大, 通过对氯碱厂副产氢气进行分离提纯,开发了制取高纯氢的新工艺及设备。采用变温和变压相结合的再生工艺,强化了再生效果。在吸附剂再生过程中,分段加热吸附剂,既保证了再生效果又减少了再生气的用量。研究表明,此工艺的运用能大大提高副产氢气的分离效率,所得产品氢的体积分数可达到99.999%以上。氢气纯度:99.999%以上、含氧量小于0.5ppm、含水量小于5ppm,其他指标均能达到国标高纯氢参数指标。氯碱厂、钨钼材料厂、石英玻璃厂、多晶硅生产厂及相关生产企业。

目前多晶硅厂引进一套氢气回收净化系统需要上亿元,而我们设计的装置只要几百万的成本,全套设备也只有进口设备的十分之一的投资,是我国走自主创新、替代进口的理想技术产品。

氯碱厂、多晶硅厂、钨钼材料厂回收系统技术均已成熟,已有多套产品投入运行,一套工业化装置的成本投资额在600万左右。可技术开发、技术改造、技术转让。

超重力法制备纳米聚苯胺纤维技术

技术简介

纳米聚苯胺纤维在防腐涂料、超级电容器等领域具有重要的应用前景。超重力旋转床作为一种新型反应器,在化工过程强化等领域具有总要的应用,且无明显放大效应。采用超重力法制备纳米聚苯胺纤维,具有反应速度快,产品形貌均一,长径比大,分散性好等特点。目前已达到中试水平。

不锈钢装备在强还原性介质中的腐蚀控制新技术及应用

技术简介

锈钢是工业、科技、国防等领域应用最广泛的材料之一。不锈钢表面的钝化膜需要在氧化性环境中才能稳定地存在,因此不锈钢在氧化性环境中,例如大气、水环境、硝酸溶液等,具有良好耐蚀性,而在非氧化性或还原性环境例如高温稀硫酸、高温甲酸等介质中,由于表面的钝化膜不稳定,不能有效地保护基体,耐蚀性就很差;在含有能破坏钝化膜的有害离子的介质中,不锈钢的耐蚀性也很差。以化工、石化工业为例,在高温稀硫酸、高温甲、乙混合酸等介质中,奥氏体不锈钢腐蚀速度很快。由于温度较高,非金属材料在这种体系中不适用,国外部分企业采用耐蚀性更高的钛材或镍基耐蚀合金,但设备价格极其昂贵,同时材料来源和加工也非常困难。

该课题组研究开发了一种利用电沉积法在不锈钢表面制备钯系合金薄膜的技术,主要通过钯对不锈钢表面钝化性能的促进作用来提高不锈钢在非氧化性介质中的耐蚀性,并研究了在工程现场对不锈钢设备进行大面积施镀的技术。这种方法能够显著提高不锈钢在非氧化性腐蚀介质中的耐蚀性,例如,在沸腾稀硫酸和沸腾甲、乙混合酸中,镀钯不锈钢的腐蚀速率可以降低三到四个数量级,在含有微量ClBr离子的环境中,耐蚀性也显著提高。已获得国家发明专利授权2项,拥有完整的自主知识产权。技术特点有:

1)研究开发了在奥氏体不锈钢表面制备钯、钯-铜和钯-铬合金薄膜的工艺技术,工艺稳定可靠,镀膜厚度可以在0.5-3μm之间控制,膜均匀致密,具有良好的结合力和抗冲击性能。镀膜、镀液及刷镀过程中均不含有毒有害物质,环保性好。

2)镀膜不锈钢在非氧化性腐蚀介质中耐蚀性大幅提高,与未镀膜同种材料比较,在典型非氧化性环境(沸腾20%硫酸,沸腾90%乙酸+10%甲酸)中腐蚀速率降低约二到三个数量级。

3)传统的电镀或化学镀方法很难对大面积表面施镀,我们开发了可对大型不锈钢设备表面实施大面积快速电刷镀钯的工艺技术,并且能够针对在用的旧不锈钢设备进行表面处理和现场施工。

应用范围及市场分析:该技术最适用的场合是以高温稀硫酸等非氧化性腐蚀环境。前期曾在几个不同企业进行了现场实施,其中在某化纤厂的醋酸吸收塔的塔内水线附近和进料口镀膜约20平方米,效果良好,镀膜两年后内壁仍保持比较平坦,未发生过去1年即产生大量腐蚀坑的现象。

此外,在抽提法、乙醇法和丁烯氧化脱氢法制丁二烯,丁腈橡胶合成,维纶生产的醛化工序,钢厂和有色冶炼厂中的硫酸酸洗装置,湿法冶金与选矿中的硫酸与硫酸盐反应体系,无机酸、有机酸生产,纯碱生产中的碳化塔冷却管,尿素生产中的高压冷凝器、汽提塔、甲铵泵,锅炉和各种轻油、重油燃烧炉的省煤器、再沸器,废热锅炉等等装置,以及轻工、制药领域的一些装置等等,都有高温非氧化性介质的不锈钢腐蚀问题,本项目的研究结果在这些领域都有潜在的应用价值。

投资条件及效益分析:设备投资小,现场施工仅需刷镀电源设备及相关附件,原料主要是采用工业级Pd盐,其成本根据镀膜的厚度不同,大约在2000/m2上下,与一般的涂镀层相比成本较高。但由于其应用场合是针对腐蚀特别严重、其它方法不能解决的设备或部位,需要保护的面积通常并不大。以一台醋酸吸收塔为例,塔高度25 m,直径2.3 m,由316L317L不锈钢分段制造,其内表面积超过180m2,装置投资约为一千万元,一旦设备由于局部腐蚀失效,会导致整套设备报废,损失巨大。但腐蚀严重的部位主要集中在塔身下部水线附近两米左右范围,面积只有十几个m2,只要这一部分的腐蚀得到控制,整套设备就可以安全运行,因此保护成本并不高。经过镀钯处理后,设备检修周期和服役寿命可以显著延长,产生明显的经济效益。

植物型洗涤日用化学品技术开发

技术简介

    国民经济的高速发展给人们带来了高质量的生活,同时也对环境造成了一定的压力。如今环保低碳的生活理念及方式已成为人们生活和和社会发展的普遍共识,作为日常生活中的易耗用品,洗涤剂的发展也日趋绿色化和植物化。植物型泡沫洗涤剂和浓缩洗涤剂以其节水节能、去污高效、生态友好等特点成为全球尤其是发达国家洗涤剂市场的主流产品,而在我国,随着人民环保意识的提高,对植物型泡沫洗涤剂浓缩洗涤剂的接受程度也越来越高。开发泡沫型和浓缩型的日用化学洗涤剂是行业可持续发展的必然趋势。

国家标准中规定通用日化洗涤剂中的活性物含量大于或等于15%即可,浓度较低,在很大程度上浪费了包装材料、运输成本及人工费用。本技术开发的是植物型泡沫洗涤剂和高浓缩洗涤剂,这种泡沫洗涤剂和高浓缩洗涤剂在配制过程中,采用先进的表面活性剂复配工艺,配制了活性物含量高达50%的浓缩洗涤剂和泡沫洗涤剂,新型绿色环保的非离子表面活性剂的加入,使产品即使在冷水中使用也不会出现凝胶,且大大提高了产品的流动性和低温稳定性,可以确保产品的高效性,在洗涤物品上使用无残留。

1)植物型高浓缩洗涤泡沫

该项目采用植物提取液作为抑菌剂添加到日化洗涤剂中,主要采用的植物类型为金银花、菊花、薄荷等产量高植物,例如金银花具有清热解毒、止痒、抑菌等特点,采用低温浸渍技术将金银花枝干和花朵浸泡在水性提取液中获得金银花提取液。配合绿色环保的表面活性剂,配制成浓度高、粘度小,受温度影响小的植物型浓缩泡沫,形成泡沫致密,减少浪费,成本低,性价比高,可用于洗手、沐浴和厨房用洗涤日化品。

2)植物型高浓缩洗涤剂

该项目采用金银花等植物提取液添加到高浓缩组分中,形成高浓缩洗涤剂。通过分子精馏和精确复配制备得到的高浓缩洗涤剂粘度低,节省运输成本等,具有很好绿色环保性能。可采用合作开发和技术入股等模式进行成果转化。同时可共同开发植物型洗护日化产品。

低共熔法分离煤焦油中的酚类化合物

技术简介

酚类化合物是一种重要的化工原材料和中间体,广泛应用于纤维、塑料的合成,农药、医药的制备,以及香料、染料等其他生产领域。煤焦油中含有丰富的酚类化合物,从中提取酚类化合物具有重要的经济价值。目前工业上比较成熟的分离方法是氢氧化钠碱洗法,但整个过程消耗大量酸碱溶液,并且会产生含酚废水需要后续处理。为了解决上述缺陷,采用新型非水相分离方法很有必要。本课题组发现并研究了一系列季铵盐通过与酚类化合物形成低共熔溶剂(deep eutectic solvents, DESs)分离油中的酚类化合物,这种方法萃取效率高,萃取剂可以循环使用,萃取过程中不使用无机碱和酸,并且避免了含酚废水的产生。针对目前使用的反萃剂乙醚具有易挥发和易爆炸等缺点、低共熔溶剂对中性油的夹带以及缺少低共熔法萃取分离真实油酚混合物过程中酚类化合物的变化规律等问题,本技术着重考察了低共熔法分离油酚混合物过程中反萃剂的选择、低共熔溶剂对中性油夹带行为和中性油的脱除,以及低共熔法萃取分离真实煤焦油过程中不同酚类化合物组成变化和物料守恒等。为低共熔法分离油酚混合物的工业应用提供理论支持。TMAC相对ChCl萃取真实煤焦油中酚类化合物的能力更强,回收率更高,但会夹带更多的中性油,且反萃剂更难去除;ChCl萃取酚中性油种类较少,主要为萘,TMAC萃取酚中性油除了萘还有大量其他种类的中性油;使用季铵盐萃取煤焦油中酚类物质的萃取率可以达到80%,低于模拟油酚混合物时的萃取率,这是由于煤焦油中多种芳环中性油与酚类物质间π-π键作用造成的;ChClTMAC在循环3次实验后基本特性保持不变,可以循环使用。

环保型光固化印刷油墨生产技术

技术简介

光固化是用紫外光辐照而瞬间凝固的技术,适合高速生产线连续作业,具有生产效率高、节能、污染小的特点。光固化印刷油墨是由于社会对环境要求提高,以及后石油时代的必然产物,它将替代现有溶剂型油墨,带来更高的印刷速度,更好的产品质量以及更低的综合成本,尤其是其社会效益。着色力:100(%);细度:12.5um);粘度:7S);流动度34mm);干性0 ;固着速度0.01min)。

主要应用于网印和胶印等方面。近几年,UV油墨在国内的发展速度非常迅速,产量与产值都已形成一定规模。据中国感光学会辐射固化专业委员会的统计,国内UV油墨的产量达到2万吨,产值约20亿元人民币。

本技术主要以不同种类的光固化低聚物、颜料、稀释剂及常用的油墨添加剂等为主要原材料,主要设备是高速分散机、三辊研磨机、树脂溶解釜(500L)、过滤机。产品不需要后处理,不添加甲苯等有机溶剂。若生产规模为100/年,设备投资约300万元,厂房面积需250m2,动力5KW,操作人员约10人。产品综合成本约70000~100000/吨,市场平均售价约110000~150000/吨,年利润约600~800万元,具有一定的经济效益。

油气田缓蚀剂生产技术

技术简介

在石油天然气工业,井下设备和地面管线的腐蚀很严重。使用缓蚀剂被证明是一项十分经济有效的技术措施。为此,我们研制开发了一系列缓蚀剂,主要有:⑴污水缓蚀剂和油井、气井缓蚀剂,主要适于污水处理站、油井、气井,防止CO2H2S造成的腐蚀;⑵酸化缓蚀剂,可以应用在盐酸、磷酸、土酸、氟硼酸酸化工艺中,酸溶性好,使用温度可达到120℃以上。

该技术工艺简单、操作方便。所生产的缓蚀剂与国内同类产品相比,具有原料成本低、缓蚀效果好、无恶臭等优点,且各项技术指标均达到了部颁标准。污水缓蚀剂、油井缓蚀剂在使用浓度为50mg/L时,现场测试缓蚀率达到90%以上,腐蚀速率小于0.05mm/a,达到了国内领先水平。其它缓蚀剂达到了国内先进水平。主要用于油田污水处理、油气井、油气集输管线防止CO2H2S腐蚀,以及油、气、水井酸化作业时防止酸的腐蚀。

进料分流强化双反应段蒸馏塔的综合与设计

技术简介

反应蒸馏技术是反应操作与分离操作相互耦合的产物,虽然它是一种最有代表性和最具发展潜力的化工过程强化技术,具有大幅度降低设备投资成本与操作能耗的潜力,但是这种优势并没有在所有的反应物系中得到充分的体现,在某些条件下,反应蒸馏技术的劣势甚至比那些传统的工艺流程(一个反应器和几个传统的蒸馏塔组成的工艺流程)还要明显。例如,在分离不利物系(反应物与产物的相对挥发度相间排列,即αR1>αP1>αR2>αP2或αP1>αR1>αP2>αR2)和最不利物系(反应物是最轻和最重组分,产物是中间组分,相对挥发度的排列顺序为αR1>αP1>αP2>aR2),使用常规反应蒸馏技术的能耗较大或者根本无法完成分离,这影响了反应蒸馏技术优势的发挥及其使用范围。为了解决这些问题,前人提出了不同的反应蒸馏结构和改进措施,但是这些方案中都存在着一个结构缺陷,即他们都忽略了未反应的反应物通过产品侧线采出口塔板的量和浓度对于反应蒸馏塔设计的影响。为了研究这种影响,本文提出了“不利浓度”的概念,并提出了“不利浓度”判据,以度量“不利浓度”的大小和研究其对系统稳态性能的影响。为了消除“不利浓度”的影响,本文提出了一种新的过程强化方案,即采取进料分流强化双反应段蒸馏塔的设计,得到新的蒸馏塔设计方案——分料双反应段蒸馏塔。分料比、分料的数量和分料的进料位置是分料双反应段蒸馏塔设计中重要的设计变量,它们的合理设计可以显著加强蒸馏塔的内部能量耦合与物质耦合,这使得双反应段结构首次应用于分离不利物系并获得了良好的稳态性能。通过对6个反应体系的对比研究结果表明,由于大幅度降低了“不利浓度”的影响,大大降低了蒸馏塔的操作能耗,与现有反应蒸馏塔的结构方案相比,本文提出的分料双反应段蒸馏塔具有最优的经济性能。对于最不利物系,分料双反应段蒸馏塔比现有最优设计降低能耗最高达133.2%;对于不利物系,分料双反应段蒸馏塔比现有最优设计降低能耗最高达4.92%。本项目的主要研究目标是“不利浓度”对蒸馏塔设计的影响,建立以“不利浓度”及其判据为核心的理论框架,针对最不利物系以及不利物系,系统地研究分料双反应段蒸馏塔的优化与设计主要的研究工作可以归纳为以下几点:1、利用平衡级模型对分料双反应段蒸馏塔进行了模型化研究,并建立了相关数学模型。2、分别针对双反应段蒸馏塔和现有研究中稳态性能最优的外部环流反应蒸馏塔进行了灵敏度分析,对比重要设计和化学参数变化对两种结构稳态设计的影响,论述了两种结构在稳态设计方面的优缺点,说明了双反应段蒸馏塔的研究意义。3、提出了影响反应蒸馏塔分离效率和能耗的因素,并提出了“不利浓度”的概念和“不利浓度”判据。