资源环境

发布时间:2016-10-28|阅读次数:13

电石渣烟气脱硫工艺的改造和应用

技术简介

本着“因地制宜、以废治废、变废为宝、发展循环经济”原则,利用电石渣替代石灰石作为脱硫剂,达到了废物综合利用。目前,我国烟气脱硫工艺主要采用石灰石-石膏湿法脱硫,该工艺相对简单、运行稳定可靠,但是脱硫剂石灰石价格比较高,运行成本约占脱硫装置的30-35%,为了提高电厂运行经济效益,降低运行成本,采用电石渣法替代石灰石法相当必要的,用电石渣替石灰石进行脱硫,一方面大大减少了电石废渣的排放,降低了对环境的污染,取得了很好的环境效益;另一方面采用了价格低廉的脱硫剂,降低了运行成本,同时减少了石灰石矿的开采,降低了有限资源的消耗,对石灰石矿产资源进行了有效保护,同时也降低石灰石-石膏法中C02的排放量,获得经济效益的同时还获得了良好的环境效益及社会效益。通过对现有烟气脱硫技术的现状比较,充分利用当地的特点,将企业的电石渣循环利用,选用电石渣-石膏湿法进行烟气脱硫,具有以废治废,变废为宝的优点,减少了污染物的排放,同时也降低了生产运行费用。采用电石渣-石膏湿法脱硫的工艺路线后,根据烟气中二氧化硫的含量,设计了脱硫塔,并制定了严格的操作规程,如液气比、烟气流速等。同时将生成的亚硫酸钙通入空气强制氧化成硫酸钙,并从脱硫塔底部用浆液泵抽出,经过二级脱水后,得到含水量为10%的脱硫石膏。通过改造后第一阶段在FGD入口SO2浓度≤2000 mg·Nm-3(使用原煤全硫含量≤0.8%)的前提下,脱硫出口SO2浓度降低到≤50 mg·Nm-3。第二阶段新、老吸收塔在FGD入口SO2浓度≤3500 mg·Nm-3(原煤的全硫含量≤1.5%)的前提下,脱硫出口SO2浓度降低到<50 mg·Nm-3,脱硫效率达到98.6%,满足了环保指标要求。最后,针对本次脱硫改造工程的运行情况进行了叙述,通过计算生产运行成本和二氧化硫减排量,得到与石灰石法相比每年节约成本约880万元,二氧化硫排量降低了841.5吨/年,因此电石渣作为脱硫剂具有良好的经济效益和环保效益。

在煤炭清洁转化中的超临界应用技术

技术简介

我国煤炭资源丰富, 原煤可采储量占世界的12.8% 排名世界第三位。煤炭是我国能源结构的重要支撑, 因此煤炭清洁转化对我国能源产业发展以及环境保护具有重要意义。超临界流体(supercritical fluid 简称SCF)是指温度、压力均高于其临界温度和临界压力的流体。SCF 兼具气体和液体的优点,其密度接近液体,具有较大的溶解能力;其粘度接近气体,具有很强的流动性能;其扩散系数接近气体,具有很高的扩散速度;此外,超临界流体绿色、环保、无污染、可回收利用,尤其是超临界水和超临界二氧化碳,价廉易得。北京化工大学化工学院将超临界技术开发应用于煤炭、化工材料、医疗制药、环境保护、食品卫生等领域。在煤炭方面用于煤发电、煤气化、煤液化、煤干燥等行业,不仅可以实现煤炭的高效转化,更为重要的是,能够有效减少环境污染,实现资源利用的可持续发展。

超(超) 临界发电技术是通过提高锅炉中蒸汽初参数,改善热循环效率,从而达到提高发电效率的目的。超临界煤催化气化技术是指煤在超临界气化剂(通常为水) 的作用下经过一系列的化学反应过程, 产生出富含氢气、一氧化碳、甲烷等混合气体的过程。超临界催化气化主要特点是气化合成气中氢气含量高, 特别适用于煤制氢项目, 能够有效降低后续制氢装置能耗, 提高制氢效率。煤液化技术是煤炭清洁利用的重要途径, 也是缓解我国石油供需矛盾的一项可行有效的技术。目前工业上比较成熟的煤液化技术主要是直接液化和间接液化。使用超临界技术对煤进行液化, 是指将煤炭粉碎到一定粒度后, 用处于超临界状态的溶剂将煤中可溶性物质(绝大多数有机质) 提取出来得到气体、液体和固体的方法。煤液化生成的气体作为高热值的燃烧气体使用; 液体可加氢精制成柴油或经过提纯得到高价值化工产品; 固态残煤可以作为廉价的吸附剂。超临界煤液化实现了温和、绿色环保条件下煤炭的全面综合利用, 提高了经济效益。超临界干燥技术利用超临界流体扩散系数高的特点, 使其快速地进入被干燥物体的内部, 温和、高效地与水分子进行交换起到干燥物料的作用, 并且不破坏干燥物形状和结构。因此, 超临界流体干燥技术在煤干燥方面有重要的应用价值。

膜吸收去除二氧化碳技术

技术简介

目前国内发电厂主要是燃煤发电,煤炭的燃烧使发电厂废气中含有大量的二氧化碳(CO2),占工业CO2 总排放量的30%左右,造成了严重的大气污染和温室效应。燃煤电厂中二氧化碳的处理已成为目前急需解决的问题,因此燃煤电厂废气中二氧化碳的捕集成为目前的研究热点之一。燃煤电厂尾气脱CO2 理论上有吸收分离法、吸附法、膜分离法、膜基吸收法和低温蒸馏法等。国际能源署在上世纪90 年代对上述几种脱CO2 法的调查研究表明,对烟道气脱CO2 较有前途的是“膜基气体吸收法”。膜吸收技术是膜技术与气体吸收技术相结合的膜过程,通常使用疏水微孔中空纤维膜将气体与吸收液隔开。用于分隔气液两相的疏水微孔膜的可用材料广泛,可以为聚四氟乙烯、聚偏氟乙烯、聚丙烯等。利用膜吸收技术捕集CO2 与传统的吸收塔相比,膜吸收可以对气、液两相流速宽范围独立控制,而且气液接触面大,能耗低,避免了液泛、雾沫夹带、沟流、鼓泡等现象发生。另外,膜吸收技术更有利于燃煤电厂尾气中CO2 的回收后再次利用,利用膜吸收技术回收的CO2 纯度高,可达到95%以上,可应用于食品、医药等行业,为社会创造了更多的经济价值和社会效益。

本技术以疏水中空纤维膜为气液两相间分隔界面,其较强的疏水性能可以防止液相的泄漏,另外所用膜材料能耐受强酸强碱的长期腐蚀,给膜吸收设备提供了更长的使用寿命。而所采用的中空纤维膜组件还具有气液接触面积大、设备体积小等优点。以MEAMDEA 等醇胺溶液为吸收剂,膜解吸过程相对简单,与传统的方法相比具有设备投资低、分离效率高、使用周期长等优点,是具有广大前景并值得推广的技术。

技术指标:所用吸收剂:MEADEA 等醇胺类吸收剂;处理前CO2 含量≤10%;处理后CO2 含量≤0.3%;去除能力:99%;吸收剂回用方式:加热解吸循环;吸收剂热解吸温度:6080℃;装置使用寿命12 年。应用范围:可广泛应用于燃煤发电厂尾气中CO2 的回收处理、烟道气处理及相关领域。市场分析膜吸收法捕集CO2 技术能耗低,占地面积小,在操作上存在很大的优势;另外,吸收CO2的吸收剂可经过加热等方法进行循环利用,捕集的CO2 浓度较高,市场前景相当广阔。效益分析:本技术设备简单、投资少、操作成本低,与传统技术相比能耗大大降低,而且回收的CO2纯度较高,经过净化之后可再次应用于医药、食品、化工等行业,具有显著的经济效益。

亲水性PVDF油水分离超滤膜的制备技术

技术简介

含油污水是一种严重的环境污染源,每年全世界范围内都会产生大量的含油污水。含油污水化学需氧量(COD),若不经过有效处理就排放到环境中,会造成严重的环境污染和生态破坏。膜法处理含有污水与传统方法相比,具有不需加入其它试剂、浓缩产物易于回收或处理、分离过程受油的组成的影响小、设备费用和运转费用低等优点,具有较大的优势。膜法处理含油污水要求膜具有较高的亲水性或者较高的疏水性,但是常见的疏水膜材料有水通量低和易污染的缺点,常见的亲水膜材料又往往具有成膜性能差或者在水中稳定性差的缺点,因此本课题采用成膜性能良好的聚偏氟乙烯(PVDF)进行亲水改性,以期得到机械强度、成膜性能及油水分离性能均良好的超滤膜。制备的中空纤维膜具有良好的性能,纯水通量可达400L·m-2·h-1以上,对煤油浓度为50mg·L-1的含油污水的截留率可达95%以上,对浓度范围在5100mg·L-1之内的含油污水均有较高的截留率,且具有良好的抗污染能力,机械强度也符合使用要更多。

废润滑油再生基础油生产工艺技术

技术简介

该课题组利用了由符合行业标准的润滑油使用后形成的废润滑油为原料,开发一套废润滑油再生基础油生产工艺技术。包括废润滑油原料的预处理、高真空蒸馏(含短程蒸馏)及后精制等工艺技术的开发。所生产的再生润滑油基础油产品的色泽、粘温指数、闪点等产品指标达到国家相关行业规定的再生油基础油标准或使用要求,并满足如下指标:

序号

项目

单位

技术指标

试验方法

轻质1基础油

轻质2基础油

中质基础油

1

外观

 

透明

透明

透明

目测

2

色度

号(不大于)

1.52.0

1.52.0

2.54.0

GB/T6540

3

酸值

mgKOH/g

0.2

0.2

0.2

GB/T264

4

水含量

%(W/W)

0.05

0.05

0.05

GB/T260

5

闪点( 开口)

160

180

200

GB/T3536

6

灰分

%(W/W)

0.005

0.005

0.005

GB/T508

7

残炭

%(W/W)

0.13

0.13

0.13

GB/T17144

8

粘度40℃)

mm2/s

1024

2445

4595

GB/T265

规模化沼气工程沼液、沼渣减量化及资源化利用

技术简介

沼气工程是一种有效处理有机废弃物的工程技术,尤其是在畜禽粪污处理和高浓度有机污水处理方面效果显著,在国内外得到了大力推广应用。近年来,随着养殖业和农产品加工业向大型化发展以及沼气作为新能源开发利用,我国沼气工程正朝着大型化、产业化方向发展。沼气工程在处理有机废弃物的同时又能够产生清洁能源,处理后的沼液沼渣还可能成为有机肥料。但实际工程中这些废弃物往往不能得到预期的“就地直接利用”,带来很多负面影响:①沼液中含有大量的NPK营养元素、生理活性物质(BAC)、数量庞大的微生物菌群以及其它无机离子和极微量的重金属成分等。这些物质成份复杂、含量未知,直接用作肥料灌溉,难以发挥最好的效用,弊大于利;②沼液直接农业利用受季节性影响明显,且由于贮存和运输等原因,没有足够的田地及时消纳,只能直接排放造成环境污染;③沼液、沼渣在农田施用时,没有规范性的技术指导,一旦施用量过大,超过土地承载能力和作物利用能力,便会造成二次污染。因此沼液、沼渣问题已经成为制约规模化沼气工程产业化推广的瓶颈。本项目围绕规模化沼气工程存在的沼液、沼渣减量及其高附加值利用等问题开展研究,通过系统分析与测定沼液中的主要组分、生理活性物质及其物理化学和生物学特性;结合沼气工程厌氧发酵液回流工艺和沼液营养物质浓缩与水资源回收技术应用研究,显著减少沼气工程沼液沼渣排放量,有效实现发酵液中营养物质与水资源分离回收;系统考察了沼液作为有机营养液、沼渣作为有机肥和人工基质在农业应用的效果,解决沼液、沼渣的消纳问题,有效提高沼液、沼渣的附加利用价值,对于促进规模化沼气工程的可持续发展具有重要意义。